Synthesis of 2,6-Diamidopyridine Derivatives and their Functions as Flavin Receptors in Chloroform

Norio Tamura, Keita Mitsui, Tatsuya Nabeshima and Yumihiko Yano*
Department of Chemistry, Gunma University, Kiryu, Gunma 376, Japan

Abstract

It has been found that 2,6-diamidopyridine derivatives act as flavin receptors by a triple hydrogen bond towards a uracil moiety of an isoalloxazine ring in CHCl_{3}. The association constants were determined by ${ }^{1} \mathrm{H} \mathrm{NMR}$ (in CDCl_{3}) and fluorescence (in CHCl_{3}) spectroscopies; the largest is ca. $10^{3} \mathrm{~mol}^{-1} \mathrm{dm}^{3}$. The triple hydrogen bond toward $\mathrm{C}(2)=\mathrm{O}, \mathrm{N}(3)-\mathrm{H}$ and $\mathrm{C}(4)=0$ of the isoalloxazine ring was found to enhance slightly the oxidation activity in CHCl_{3}.

For the construction of totally synthetic catalysts that exhibit enzyme-like functions (artificial enzymes), the following are of primary importance; (i) a highly active catalytic group; (ii) that the catalyst has a substrate-binding site and (iii) that the functional groups are arranged properly. ${ }^{1}$ Many model systems employing functionalized micelles, macrocycles, membranes and polymers have been reported so far. ${ }^{2}$ In such systems, arrangement of the functional group is achieved by covalent and/or non-covalent bonds such as hydrophobic and electrostatic interactions and hydrogen bonds.

To construct an artificial flavoenzyme, we have successfully exploited remarkably high oxidation-active flavin mimics by the chemical modification of an isoalloxazine ring. ${ }^{3}$ Among them benzodipteridine (BDP), which shows $c a .10^{7}$-fold rate enhancement for the oxidations proceeding via $\mathrm{C}(4 \mathrm{a})$-attack, is quite useful for studies of flavin-mediated oxidations in model systems. ${ }^{3 c, e . f}$ Thus, our next subject is the incorporation of functionality into the oxidation-active flavin mimic by covalent and/or non-covalent bonds. A successful example for the covalent functionalization is a D-lactate dehydrogenase model system; BDP having a bipyridin-6-ylmethyl moiety at the $\mathrm{N}(3)$ position oxidizes α-hydroxy acids to α-keto acids in the presence of Zn^{2+} and a base in an organic solvent such as $\mathrm{Bu}^{t} \mathrm{OH} .{ }^{4}$ It is found that Zn^{2+} bound into the bipyridine moiety not only improves the oxidation activity of BDP but also acts as a substrate-binding site and activates the substrate.

For the non-covalent functionalization, one may consider a flavin receptor bearing functional groups. The functionalized flavin receptor binds a flavin to form a molecular complex in which the functional groups would be arranged near the reaction site by non-covalent bonds. Thus we focused our attention on the exploitation of a flavin receptor. Meanwhile, functions of biological molecules generally appear through specific interactions with another molecule and a hydrogen bond is one of the significant factors in such interactions. Many receptors using hydrogen bonds have been reported from a molecular recognition viewpoint. ${ }^{5}$ For example, Feibush et al. reported that barbiturates, glutamides and hydantoins, possessing a structural similarity to uracil and thymine skeletons, are able to interact with 2,6-diamidopyridine derivatives by the triple hydrogen bond in a solute-stationary phase of HPLC. ${ }^{6}$ Hamilton et al. have shown that a macrocyclic receptor containing 2,6-diamidopyridine and naphthalene components (1h) forms a molecular complex with a thymine derivative by the triple hydrogen bond and $\pi-\pi$ stacking. ${ }^{5 a, 7}$ These facts suggest that 2,6-diamidopyridine derivatives are able to act as a flavin receptor by the triple hydrogen bond as shown in Scheme 1, since an isoalloxazine ring possesses a uracil moiety within the molecule.
In this paper, we describe the synthesis of 2,6-diamido-

Scheme 1
pyridine derivatives, association constants with flavin models in chloroform, potentiality as a flavin carrier and the effect of the receptors on the oxidation activity of flavin models in $\mathrm{CHCl}_{3} .{ }^{8}$ The compounds employed are shown in Scheme 2 [receptors (1) and flavin model compounds (2-5)].

Results and Discussion

Synthesis.-Receptors ($\mathbf{1 a - 1 k}$) were synthesized from 2,6diaminopyridine and the corresponding acid chlorides in a similar manner to the literature. ${ }^{7 b}$ 4-Substituted 2,6-diamidopyridine derivatives ($\mathbf{1 1}-\mathbf{1 n}$) were synthesized by a similar procedure described by Feibush et al. ${ }^{6}$ Flavins $\mathbf{2 a}$ and $\mathbf{2 b},{ }^{9} \mathbf{3},{ }^{10}$ $4^{3 a}$ and $5 a-5 c^{3 d, e}$ were synthesized according to literature methods. Flavin 5a was synthesized as for $\mathbf{5 b}$ and $\mathbf{5 c}$ except for the stepwise condensation of N, N^{\prime}-didodecyl- p-phenylene diamine with 6-chloro-3-methyluracil and 6-chlorouracil as shown in Scheme 3.
${ }^{1} \mathrm{H}$ NMR Study.-Formation of the triple hydrogen bond as shown in Scheme 1 was examined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in CDCl_{3}. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 f}, \mathbf{2 a}$ and their $1: 1$ mixture are shown in Fig. 1. As can be seen in Fig. 1(c), both the $\mathrm{N}-\mathrm{H}$ protons of $\mathbf{1 f}$ and $\mathbf{2 a}$ showed downfield shifts. In the case of $\mathbf{2 b}$, however, such a chemical shift of the $\mathrm{N}-\mathrm{H}$ of the receptor was not observed. This indicates clearly that $\mathbf{1 f}$ and 2a form a molecular complex by the triple hydrogen bond as shown in Scheme 1. In this complex, slight upfield shifts on the phenyl protons of If were also observed, suggesting the existence of $\pi-\pi$ stacking between the phenyl ring of $1 f$ and $2 \mathbf{2 a}$. Similar upfield shifts were also observed for the aromatic protons of $\mathbf{1 g}, \mathbf{1 h}, \mathbf{1 m}$ and $1 n$.

The stoichiometry of the complex formation was determined by a Job plot, which has a maximum at a mole fraction of $c a .0 .5$ (Fig. 2). This indicates explicitly a $1: 1$ complex formation as shown in Scheme 1.

Determination of Association Constants.-The association constants were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in CDCl_{3}. Plots of the changes of the chemical shifts of the flavin $\mathrm{N}(3)-\mathrm{H}$

1a $R^{1}=R^{2}=M e$
1b $R^{1}=R^{2}=C_{5} H_{11}$
1c $R^{1}=R^{2}=C_{11} H_{23}$
1d $R^{1}=R^{2}=P h$
1e $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OPh}$
if $R^{1}=R^{2}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OPh}$
1g $R^{1}=R^{2}=$

1i $R^{1}=C_{11} H_{23}, R^{2}=P h$ 1j $R^{1}=\mathrm{C}_{11} \mathrm{H}_{23}, R^{2}=$

$11 \mathrm{R}=\mathrm{C}_{5} \mathrm{H}_{11}$ 1m $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OPh}$
in $R=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}$

2a $R=H$
$2 b R=M e$

3

4

5a $R^{1}=C_{12} H_{25}, R^{2}=H, R^{3}=M e$
5b $R^{1}=\mathrm{C}_{12} \mathrm{H}_{25}, R^{2}=\mathrm{R}^{3}=\mathrm{Me}$
5c $R=E t, R^{2}=R^{3}=H$

Scheme 2 1, Receptors; 2 -5 flavin model compounds
resonances as a function of the receptor concentration gave a titration curve which allowed us to calculate the association constants by the non-linear least-squares fitting of the titration curve. A typical ${ }^{1} \mathrm{H}$ NMR titration curve of the $\mathrm{N}(3)-\mathrm{H}$ of $\mathbf{2 a}$ with $\mathbf{1 b}$ are shown in Fig. 3.

Some association constants were also determined by fluorescence spectroscopy in $\mathrm{CHCl}_{3} .{ }^{11}$ The results are summarized in Table 1 together with the chemical shifts of $\mathrm{N}-\mathrm{H}$ of the receptors. Association constants determined by each method show good agreement. It was confirmed that the association constants of $\mathbf{2 b}$ with $\mathbf{1 b}$ or $\mathbf{1 h}$ are less than $20 \mathrm{~mol}^{-1}$ dm^{3}, indicating that dynamic fluorescence quenching of flavins by receptors is quite small. Inspection of Table 1 indicates that the K values are dependent on the structure of the receptors, and seem to be related to the chemical shifts of the $\mathrm{N}-\mathrm{H}$ of the receptors. The more acidic $\mathrm{N}-\mathrm{Hs}$ with downfield chemical shifts form stronger hydrogen bonds, resulting in larger K values. However, 2a does not form the complexes with 1d and 1e and weakly form complexes with the receptors $\mathbf{1 i}, \mathbf{1 j}$ and $\mathbf{1 k}$. These results may be explained by steric hindrance of the ortho hydrogens of the phenyl group of the receptors in the complex

Scheme 3 Reagents: i, 6-chloro-3-methyluracil, N, N-diethylaniline, BuOH ; ii, 6-chlorouracil, N, N-diethylaniline; iii, $\mathrm{NaNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, AcOH ; iv, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, DMF- $\mathrm{H}_{2} \mathrm{O}$

Fig. $1{ }^{1} \mathrm{H}$ NMR spectra of NHs of flavin and receptor $(a) \mathbf{2 a},(b) \mathbf{1 f}$, (c) 1:1 mixture of 2a and 1f. The NH protons are indicated by arrows.
formation, since the amide bonds of the receptors require coplanarity of the phenyl group. No complex formation of $\mathbf{1 e}$ may be explained by formation of an intramolecular fivemembered hydrogen bond between the ether oxygen and the

Fig. 2 Job plot for $\mathbf{2 a}$ and $\mathbf{1 b}$. $[\mathbf{2 a}]+[\mathbf{1 b}]=5.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{in}$ $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

Fig. 3 Plot of chemical shifts of NH proton of $\mathbf{2 a}$ vs. [1b] in CDCl_{3} at $25^{\circ} \mathrm{C}$. $[2 \mathrm{a}]=2.5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3}$, the theoretical line was obtained by the curve fitting method.

Table 1 Association constants with flavin 2a

	NH (receptor) ppm	$K / \mathrm{mol}^{-1} \mathrm{dm}^{3}$	
Receptors	7.53	510 ± 30^{a}	$(410 \pm 30)^{b}$
$\mathbf{1 a}$	7.50	150 ± 10	(180 ± 10)
$\mathbf{1 b}$	7.50	160 ± 30	(170 ± 10)
$\mathbf{1 c}$	8.29	~ 0	
$\mathbf{1 d}$	8.73	~ 0	
$\mathbf{1 d}$	7.65	290 ± 20	(320 ± 0)
$\mathbf{1 f}$	7.60	800 ± 80	(1060 ± 10)
$\mathbf{1 g}$	7.74	820 ± 120	(810 ± 80)
$\mathbf{1 \mathbf { h }}$	$7.57,8.28$	ca. 10 ± 0	
$\mathbf{1 i}$	$7.55,8.16$	ca. 20 ± 10	
$\mathbf{1 j}$	$7.57,8.28$	ca. 30 ± 20	
$\mathbf{1 k}$	7.64	210 ± 20	(230 ± 0)
$\mathbf{1 1}$	7.70	390 ± 0	(390 ± 20)
$\mathbf{1 m}$	770 ± 10	(940 ± 40)	
$\mathbf{1 m}$			

[^0]amide NH hydrogen, which disturbs the intermolecular hydrogen bond formation with flavin. The larger K values of $\mathbf{1 g}$ and $\mathbf{1 h}$ suggest the contribution of $\pi-\pi$ stacking between the

Scheme 4

Fig. 4 Spectral change of $\mathbf{2 a}$ by addition of $\mathbf{1 a}$ in CHCl_{3} at $25^{\circ} \mathrm{C}$. $[\mathbf{2 a}]=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3},[\mathbf{1 a}]=0-1.38 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$.
naphthalene ring and the isoalloxazine ring. The association constants obtained from fluorescence spectroscopy are in fairly good agreement with those from the ${ }^{1} \mathrm{H}$ NMR spectra ($\mathbf{1 a}, \mathbf{1 b}$, $\mathbf{1 f}, \mathbf{1 g}, 1 \mathrm{~h}, 11$ and $\mathbf{1 m}$).
The association constants are also dependent on the structure of the flavins (Table 2). The electron densities on the carbonyl oxygens at the $\mathrm{C}(2)$ - and $\mathrm{C}(4)$-positions of 3 are expected to be increased by the 8 -octylmercapto group owing to the resonance structures as shown in Scheme 4. In fact, the association constants of $\mathbf{3}$ are larger than those of 2a, $\mathbf{4}$ and 5a. However, for electron-deficient flavins (4 and 5a), ${ }^{12}$ no noticeable decrease in the K values was observed.

Effect of Receptors on the Electronic Absorption Spectra of Flavins.-The absorption spectra of flavins are known to be changed by hydrogen bonding at the hetero atoms of the isoalloxazine ring. ${ }^{13}$ The absorption band of $2 \mathrm{a}\left(\lambda_{\text {max }} 441 \mathrm{~nm}\right.$) slightly shifted to $\lambda_{\text {max }} 443 \mathrm{~nm}$ with the increase of the optical density upon the addition of 1a (Fig. 4). This observation is in agreement with the result of $a b$ initio calculations of the hydrogen-bonded isoalloxazine at the $\mathrm{C}(2)=\mathrm{O}, \mathrm{N}(3)-\mathrm{H}$ and $\mathrm{C}(4)=\mathrm{O} .{ }^{14}$ Similar spectral changes were also observed for 3,4 and 5 a in the presence of $\mathbf{1 b}, \mathbf{1 c}$ or $\mathbf{1 1}$. No spectral change was observed for $\mathbf{2 b}$ in the presence of the receptors. These results also suggest formation of the triple hydrogen bond as shown in Scheme 1. On the other hand, when the receptors having the naphthalene component ($\mathbf{1 g}, \mathbf{1 h}$ and $\mathbf{1 n}$) were employed, the spectral changes of the flavins ($\mathbf{2 a}, \mathbf{3}, \mathbf{4}$ and $\mathbf{5 a}$) were found to be slightly different from those with 1a. The absorption spectra of $\mathbf{2 a}$ in the presence of $\mathbf{1 g}$ and $\mathbf{1 h}$ are shown in Fig. 5. Fig. 5 shows that the spectral shape is broadened in the presence of $\mathbf{1 g}$ or $\mathbf{l h}$ with slight shift to longer wavelength, probably due to $\pi-\pi$ stacking between the flavin and the naphthalene ring(s). Furthermore, the optical density of $\mathbf{2 a}$ at $\hat{\lambda}_{\text {max }} 443 \mathrm{~nm}$ was found to increase in the presence of the macrocyclic receptors (1 h and

Table 2 Association constants of flavins and receptors ${ }^{a}$

Flavins	$K / \mathrm{mol}^{-1} \mathrm{dm}^{3}$				
	1b	1h	11	1m	1n
2a	150 ± 20	820 ± 120	210 ± 20	390 ± 30	550 ± 70
3	270 ± 30	1300 ± 140	510 ± 40	1300 ± 250	1300 ± 230
4	86 ± 10	630 ± 90	280 ± 10	170 ± 20	820 ± 280
5a	90 ± 20	630 ± 60	150 ± 10	430 ± 100	1400 ± 200

${ }^{a}$ In CDCl_{3}, at $25^{\circ} \mathrm{C}$; the uncertainty is expressed by standard deviation.

Table 3 Extraction of 5 c by receptors

	Receptor	Extractability (\%)
None	<1.5	
1b	3.2	
lf	5.1	
$\mathbf{l g}$	24	
$\mathbf{l h}$	16	
ll	4.6	

Fig. 5 Spectral change of $\mathbf{2 a}$ by addition of $\mathbf{1 g}$ or $\mathbf{1 h}$ in CHCl_{3} at $25^{\circ} \mathrm{C}$. A dotted line shows the spectrum of $2 \mathbf{a}$ without the receptor. [2a] $=$ $1.0 \times 10^{5} \mathrm{~mol} \mathrm{dm}^{-3},[\mathbf{1 g}]=[\mathbf{1} \mathbf{h}]=7.2 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$.
$\mathbf{1 n}$), and to decrease with the non-ring receptor ($\mathbf{1 g}$). The same trend was observed for the other flavins ($\mathbf{3}, \mathbf{4}$ and 5a). However, the reason is not clear at present, although it suggests a different $\pi-\pi$ stacking form for $\mathbf{1 g}$ and $\mathbf{1 h}$.

Flavin Extraction by the Receptor.-The molecular complex of a water-soluble flavin with the receptor is considered to be strongly hydrophobic. If so, the receptor would act as a carrier of water-soluble flavins from an aqueous layer into an organic layer. This possibility was examined by employing a flavin extraction experiment in a two-phase system of $\mathrm{H}_{2} \mathrm{O}-\mathrm{CHCl}_{3}$. A solution of CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$ containing 5 c was stirred vigorously and the concentration of $5 \mathbf{c}$ in the CHCl_{3} layer was determined spectrophotometrically (542 nm). The extractability was calculated by eqn. (1), the results are shown in Table 3. In

$$
\begin{equation*}
\text { Extractability }(\%)=\frac{[\text { Flavin }]_{\text {org }}}{[\text { Flavin }]_{0}-[\text { Flavin }]_{\text {org }}} \times 100 \tag{1}
\end{equation*}
$$

the absence of the receptors, 5 c was found to be scarcely extracted into the CHCl_{3} layer ($<1.5 \%$). In the presence of the receptors (250 molar excess over 5 c), however, 5 c was found to be extracted into the CHCl_{3} layer. It is notable that $\mathbf{1 g}$ and $\mathbf{1 h}$ extract 5 c more effectively compared with the other receptors. Extraction equilibrium constant (K_{e}) of $\mathbf{1 g}$ and $\mathbf{1 h}$ with $\mathbf{5 c}$ can be determined by the following equations [eqns. (2)-(4)]. ${ }^{15}$ Thus

Fig. 6 Plots of eqn. (6) for $\mathbf{1 g}$ or $\mathbf{1 h} ., 1 \mathrm{~g} ; \bigcirc, \mathbf{1 h}$

$$
\begin{gather*}
{[\text { Flavin }]_{\mathrm{aq}} \stackrel{K_{1}}{\rightleftharpoons}[\text { Flavin }]_{\text {org }}} \tag{2}\\
{[\text { Flavin }]_{\text {org }}+n[\text { Receptor }]_{\text {org }} \stackrel{K_{2}}{\rightleftharpoons}[\text { Complex }]} \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
[\text { Flavin }]_{\mathrm{aq}}+n[\text { Receptor }]_{\mathrm{org}} \stackrel{K_{\mathrm{c}}}{\rightleftharpoons}[\text { Complex }] \tag{4}
\end{equation*}
$$

the overall binding of the receptor with the flavin in the solvent extraction can be represented as shown in eqn. (5), where

$$
\begin{align*}
K_{\mathrm{e}}=K_{1} K_{2}= & \frac{[\text { Complex }]}{[\text { Flavin }]_{\mathrm{aq}}[\text { Receptor }]_{\mathrm{org}}^{n}}= \\
& \frac{[\text { Flavin }]_{\mathrm{org}}}{\left([\text { Flavin }]_{o}-[\text { Flavin }]_{\text {org }}\right)[\text { Receptor }]_{\mathrm{org}}^{n}} \tag{5}
\end{align*}
$$

[Flavin] $]_{\text {aq }}$ and [Flavin] $]_{\text {org }}$ denote the concentrations of the flavin in aqueous and organic layers, respectively. Since $[\text { Flavin }]_{\mathrm{aq}}+[$ Complex $] \gg[\text { Flavin }]_{\text {org }}$ can be assumed on the basis of insolubility of 5 c in the organic layer, eqn. (5) is represented as eqns. (6) and (7). The n value was determined to

$$
\begin{align*}
\log \frac{[\text { Flavin }]_{\text {org }}}{[\text { Flavin }]_{0}-[\text { Flavin }]_{\text {org }}} & = \\
& n \log [\text { Receptor }]_{\text {org }}+\log K_{\mathrm{e}} \tag{6}
\end{align*}
$$

be 1.0 from the slope in a plot of $\log [5 \mathbf{5 c}]_{\text {org }} /\left([5 c]_{0}-[5 \mathbf{c}]_{\text {org }}\right) v s$. \log [receptor] (Fig. 6). The unity of the n value indicates that 5 c is extracted via the formation of a $1: 1$ complex, although 5 c has two binding sites. K_{c} values were also calculated to be 6.3 and $5.9 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$ for $\mathbf{1 g}$ and $\mathbf{1 h}$, respectively.

Effect of Receptors on Oxidation-activity of Flavin.-It is known that flavin coenzymes bind to specific sites of

Table 4 Effect of receptors on the oxidation of PhNHNH_{2} and BNAH by 5 in $\mathrm{CHCl}_{3}{ }^{a}$

Receptor	$10^{3} k_{\text {obs }} / \mathrm{s}^{-1}$ (rel. rate)					
	PhNHNH2			BNAH		
	5a	5b	$5 c^{\text {b }}$	5a	5b	$5 \mathrm{c}^{\text {b }}$
None	5.71 (1.0)	4.48 (1.0)	15.0 (1.0)	3.03 (1.0)	$1.22(1.0)$	$20.3(1.0)$
1a	7.63 (1.3)	3.58 (0.80)	61.1 (4.1)	4.15 (1.3)	0.993 (0.76)	$27.8 \text { (1.3) }$
1b	7.34 (1.3)	4.59 (1.0)	25.0 (1.7)	3.28 (1.1)	1.21 (1.0)	21.0 (1.0)
1c	8.41 (1.5)	3.77 (0.84)	27.7 (1.8)	2.84 (0.94)	1.17 (0.96)	19.6 (0.96)
1 f	10.3 (1.8)	4.41 (0.98)	46.1 (3.1)	3.48 (1.1)	1.01 (0.83)	21.5 (1.1)
1h	11.0 (1.9)	4.16 (0.93)	22.6 (1.5)	3.77 (1.2)	1.08 (0.88)	31.4 (1.5)
11	-	-	28.6 (1.9)	3.04 (1.0)	1.15 (0.94)	21.7 (1.1)
1 m	9.37 (1.6)	3.67 (0.82)	49.1 (3.3)	3.40 (1.1)	1.02 (0.84)	23.2 (1.1)
1n	7.35 (1.3)	2.80 (0.63)	22.1 (1.5)	3.45 (1.1)	1.24 (1.0)	37.7 (1.8)

$a[5]=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3},\left[\mathrm{PhNHNH}_{2}\right]=1.83 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3},[\mathrm{BNAH}]=8.00 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$, [Receptor] $=5.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$, $\mathrm{N}_{2}, 25^{\circ} \mathrm{C}$. The data are the average values of at least two runs; relative error is less than $10 \%{ }^{\mathrm{b}} 2 \%(\mathrm{v} / \mathrm{v}) \mathrm{DMF}$.

Fig. 7 Concentration effect of receptors on the oxidation of PhNHNH ${ }_{2}$ by 5. With $\mathbf{1 a}: \square, \mathbf{5 a} ; \triangle, \mathbf{5 b} ; \bigcirc, \mathbf{5 c}(2 \% \mathrm{DMF})$. With $\mathbf{1 c}$: \square, 5a; A, 5b; , 5c (2\% DMF). [5] $=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}{ }^{-3}$, $\left[\mathrm{PhNHNH} H_{2}\right]=1.83 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}, \mathrm{~N}_{2}, 25^{\circ} \mathrm{C}$
apoproteins, in which hydrogen bondings towards heteroatoms of an isoalloxazine ring play an important role at active sites of flavoproteins. ${ }^{16}$ In model systems, it is well established that the hydrogen bonding at the $\mathrm{N}(5)$-position of an isoalloxazine ring facilitates the reactions proceeding via $\mathrm{C}(4 \mathrm{a})$-attack by stabilizing the negative charge generated on the $\mathrm{N}(5)$-atom. ${ }^{17}$ Meanwhile Nishimoto et al. have suggested, on the basis of quantum mechanical considerations, that hydrogen bonds occurring at $\mathrm{C}(2)=\mathrm{O}, \mathrm{N}(3)-\mathrm{H}$ and $\mathrm{C}(4)=\mathrm{O}$ of an isoalloxazine ring are one of the important factors to regulate the catalytic activity of flavoproteins. ${ }^{14}$ It is of interest, therefore, to examine the effect of the receptor on the reactivity of flavins.

Effects of the receptors on the reactivity of flavins were kinetically examined for oxidations of N-benzyl-1,4-dihydronicotinamide (BNAH) ${ }^{18}$ and phenylhydrazine ${ }^{19}$ by 5 in CHCl_{3} under anaerobic conditions. It should be noted that these oxidations occur smoothly in CHCl_{3} only when the oxidationactive flavin mimic is used. Pseudo-first-order rate constants were determined by following the absorption increase of the reduced 5 at $640 \mathrm{~nm} .{ }^{3 a}$ The concentration effect of the receptors (1 a and $\mathbf{1 h}$) on the rate of the oxidation of PhNHNH_{2} by 5 are shown in Fig. 7.

Fig. 7 shows clearly that the rates increase with increase of
[receptor] in the case of $5 \mathbf{c}$, and $1 \mathbf{1 a}$ is much more effective than $\mathbf{1 h} .{ }^{20}$ This may be owing to steric hindrance of the naphthalene ring of 1 h for nucleophilic attack of PhNHNH_{2} at the $\mathrm{C}(4 \mathrm{a})$ position. ${ }^{19}$ In the case of 5 a possessing one triply hydrogenbonded site, the rate enhancement is smaller than $\mathbf{5 c}$, probably because PhNHNH_{2} is able to attack another $\mathrm{C}(4 \mathrm{a})$-position of the non-hydrogen-bonded part of $\mathbf{5 a}$. Flavin model 5 could be considered to possess two isoalloxazine rings fused to a common benzo moiety, resulting in two reaction sites. For $\mathbf{5 b}$, no rate enhancement is observed for both the reactions because there is no binding site for the receptors. The rate constants and relative rates at [receptor] $=5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ are listed in Table 4. ${ }^{21}$ The effect of the hydrogen bonds on the rates of the oxidation of BNAH is smaller than that on the rates of PhNHNH_{2} probably because of the difference of the reaction mechanisms. The oxidation of BNAH proceeds via a hydride transfer (or its equivalents) to the $\mathrm{N}(5)$-position ${ }^{18}$ which is a little distant from the hydrogen bonding sites compared with the $\mathrm{C}(4 \mathrm{a})$-position for PhNHNH_{2}. It does not always follow that the receptors possessing larger K values further increase the reactivity of the complexed flavin. For example, $\mathbf{1 h}$ and $\mathbf{1 n}$ do not show larger rate-accelerations despite their larger K values among the receptors as shown in Table 4. This suggests the existence of at least two roles for the receptors; (i) a rateaccelerating effect due to the hydrogen bonding, and (ii) a rateretarding effect due to steric hindrance of the substituents of the receptors. We consider that this information is quite important for the design of sophisticated flavin receptors. From these observations, it would be concluded that the hydrogen bonding to carbonyl oxygens at the $C(2)$ - and $C(4)$-positions of an isoalloxazine ring activates slightly its reactivity, but it depends on the reactions. Meanwhile Fukuzumi et al. reported that a flavin-metal complex, in which metal ions such as Mg^{2+} and Zn^{2+} interact with the $\mathrm{C}(2)=\mathrm{O}$ group, exhibits a high activity towards photooxidation of benzyl alcohol in MeCN. ${ }^{22}$ This high reactivity could be explained by the stronger electronseeking abilities of the metal-complexed species and protonated ones owing to the full positive charges of metal ions and protons. Shinkai et al. reported that $\mathbf{1 h}$ decreases the rate of photooxidation of 1,4 -butanedithiol to one third, whereas 1 a shows no effect. ${ }^{8 b}$ This may also be explained by steric hindrance owing to the naphthalene ring of $\mathbf{1 h}$, although the reasons are not mentioned.

In conclusion, the present study has demonstrated that 2,6diamidopyridine derivatives act as flavin receptors via a triple hydrogen bond at the $\mathrm{C}(2)=\mathrm{O}, \mathrm{N}(3)-\mathrm{H}$ and $\mathrm{C}(4)=\mathrm{O}$ atoms of the isoalloxazine ring and act as a flavin carrier of a watersoluble flavin into a chloroform layer from a water layer. The triply hydrogen-bonded flavin shows a slightly increased
reactivity and the degree of its magnitude is dependent on the reaction.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JNM-PMX60si (60 MHz), Varian Gemini-200 (200 MHz) or a JEOL JNMA500 (500 MHz) instrument with chemical shifts from tetramethylsilane. Electronic absorption spectra were measured on a JASCO Ubest-560 spectrophotometer. Fluorescence spectra were measured on a Hitachi 850 fluorescence spectrophotometer. Melting points are uncorrected. Flash column chromatography was performed by using Wakogel C200 (silica gel, $70-150 \mu \mathrm{~m}$, Wako). Elemental analyses were performed at the Microanalytical Laboratory, Gunma University.
The receptors were synthesized from 2,6-diaminopyridine derivatives and the corresponding acid chlorides according to the literature. ${ }^{7 b}$

Synthesis of $\mathrm{N}^{\prime} \mathrm{N}^{\prime}$-Pyridine-2,6-diylbis(alkanamide)s 1a-1e.To a stirred solution of 2,6 -diaminopyridine (1 equiv.) and triethylamine (2 equiv.) in dry tetrahydrofuran (THF) was added a solution of the corresponding acid chloride (2 equiv.) in dry THF with cooling (ice-bath) and the mixture was stirred overnight at room temp. The reaction mixture was concentrated in vacuo and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water and dried over MgSO_{4}. After filtration of the MgSO_{4}, the solvent was distilled off in vacuo. Crude products formed were purified by recrystallization.

1a; Yield 86%; m.p. $200^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right)$ (lit. ${ }^{6 a}$ m.p. $205-206{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.53(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, $7.70\left(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}, \mathrm{py}-\mathrm{H}_{4}\right)$ and $7.89(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, py- $\mathrm{H}_{3,5}$).

1b; Yield 82%, m.p. $256-257^{\circ} \mathrm{C}$ (THF-hexane); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.91\left(6 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.3-1.4[8 \mathrm{H}, \mathrm{m}$ $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right], 1.7-1.8\left[4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right], 2.37(4 \mathrm{H}, \mathrm{t}$, $\left.J 8.0 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 7.50(2 \mathrm{H}$, br s, NH), $7.70(1 \mathrm{H}, \mathrm{t}, J 8.5 \mathrm{~Hz}$, py- H_{4}) and $7.90\left(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}\right.$, py-H $\mathrm{H}_{3.5}$) (Calc. for $\mathrm{C}_{17} 7 \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 66.85; H, 8.91 ; N, 13.76. Found: C, 66.6; H, 8.8; N, 13.6%).

1c; Yield 74%, m.p. $110-111^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88\left(6 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.4[32 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right], 1.6-1.8\left[4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right], 2.36(4 \mathrm{H}, \mathrm{t}$, $\left.J 7.5 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 7.50(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.70(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}$, py- H_{4}) and $7.90\left(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}\right.$, py- $\mathrm{H}_{3,5}$) (Calc. for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 73.25 ; \mathrm{H}, 10.85 ; \mathrm{N}, 8.84$. Found: C, 74.1; $\mathrm{H}, 11.0$; $\mathrm{N}, 8.9 \%$).

1d; Yield 76%, m.p. ${ }^{176-177}{ }^{\circ} \mathrm{C}$ (THF-hexane) (lit. ${ }^{23} \mathrm{~m} . \mathrm{p}$. $\left.176^{\circ} \mathrm{C}\right), \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.50-7.55\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{m}\right), 7.56-$ $\left.7.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{p}\right), 7.84(1 \mathrm{H}, \mathrm{t}, J 8.5 \mathrm{~Hz}, \text { py-H })_{4}\right), 7.90-7.94$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{o}\right), 8.14\left(2 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}\right.$, py- $\left.\mathrm{H}_{3.5}\right)$ and $8.29(2 \mathrm{H}, \mathrm{br}$ s, NH).
1e; Yield 82%, m.p. $148-149{ }^{\circ} \mathrm{C}$ (THF-hexane), $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 4.63\left(4 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{O}\right), 7.01-7.10\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{o, p}\right)$, $7.34-7.39\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{m}\right), 7.78(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}$, py-H4) $) 8.04$ $\left(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}\right.$, py- $\mathrm{H}_{3.5}$) and $8.73(2 \mathrm{H}$, br s, NH) (Calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{C}, 66.8 ; \mathrm{H}, 5.07 ; \mathrm{N}, 11.1$. Found: C, $66.55 ; \mathrm{H}, 5.1$; $\mathrm{N}, 11.1 \%$).
Synthesis of $\mathbf{1 f}-\mathbf{1 h}$.-These compounds were also prepared from 2,6-diaminopyridine and the corresponding acid chlorides. The acid chlorides were obtained by chlorination of 4phenoxybutyric acid and 4-(2-naphthyloxy)butyric acid with SOCl_{2} in benzene or 2,7-bis(3-carboxypropoxy)naphthalene with oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. These compounds were used without further purification. The acids were obtained from alkaline hydrolysis of the corresponding ethyl esters which were prepared from ethyl 4-bromobutyrate and phenol and the naphthol derivatives in acetone in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}{ }^{7 b} 4$ -

Phenoxybutyric acid: m.p. $62-64{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right)$ (lit., ${ }^{24} \mathrm{~m} . \mathrm{p}$. $\left.62-63{ }^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.09-2.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}-\right.$ $\left.\mathrm{CH}_{2}\right), 2.59\left(2 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.03(2 \mathrm{H}, \mathrm{t}, J 6.1 \mathrm{~Hz}$, OCH_{2}), 6.87-6.91 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{o}$), $6.92-6.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{p}\right)$ and 7.25-7.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{m}$). 4-(2-Naphthyloxy)butyric acid: m.p. $123-124{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right)$ (lit., ${ }^{25}$ m.p. $124^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.16-2.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.64(2 \mathrm{H}, \mathrm{t}, J 7.3$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.15\left(2 \mathrm{H}, \mathrm{t}, J 6.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.11-7.15(2 \mathrm{H}, \mathrm{m}$, naph- $\mathrm{H}_{1.3}$), $7.33\left(1 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}\right.$, naph- $\left.\mathrm{H}_{6}\right), 7.43(\mathrm{t}, J 7.9 \mathrm{~Hz}$, naph- H_{7}) and 7.69-7.77 ($3 \mathrm{H}, \mathrm{m}$, naph- $\mathrm{H}_{4.5 .8}$).
2,7-Bis(3-carboxypropoxy)naphthalene was prepared as described in the literature. ${ }^{7 a}$ Yield 74%. M.p. $154-155^{\circ} \mathrm{C}$ (ethyl acetate); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}:\left[{ }^{2} \mathrm{H}_{10}\right] \mathrm{Me}_{2} \mathrm{SO}=10: 1\right) 2.11-$ $2.17\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.53\left(4 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.12$ $\left(4 \mathrm{H}, \mathrm{t}, J 6.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.97\left(2 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}\right.$, naph $\left.-\mathrm{H}_{4.5}\right), 7.04$ ($2 \mathrm{H}, \mathrm{s}$, naph- $\mathrm{H}_{1.8}$) and $7.63\left(2 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}\right.$, naph- $\mathrm{H}_{3.6}$).
1f; 4-Phenoxybutyroyl chloride was obtained by refluxing 4phenoxybutyric acid ($3.0 \mathrm{~g}, 16.6 \mathrm{mmol}$) and thionyl chloride (9.8 $\mathrm{g}, 83 \mathrm{mmol}$) in benzene ($50 \mathrm{~cm}^{3}$) for 4 h . After the excess SOCl_{2} and the solvent were evaporated in vacuo, the residue was dried in a vacuum desiccator. A methylene dichloride solution (20 cm^{3}) containing the acid chloride was added dropwise into a mixture of 2,6-diaminopyridine ($0.82 \mathrm{~g}, 7.5 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ (2.3 $\left.\mathrm{cm}^{3}, 16 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ on an ice-bath and the reaction mixture was stirred overnight at room temp. The organic layer was washed twice with water $\left(50 \mathrm{~cm}^{3}\right)$ and then dried over MgSO_{4}. After filtration of $\mathrm{MgSO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated in vacuo to give a white solid which was purified by recrystallization from THF-hexane. Yield $2.5 \mathrm{~g}(76 \%)$, m.p. $87-$ $88^{\circ} \mathrm{C}, \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.18-2.25\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right)$, $2.61\left(4 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 4.06\left(4 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, 6.90-6.92 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{o, p}$), 6.93-6.97 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{m}$), 7.65 $(2 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 7.70\left(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}\right.$, py- $\left.\mathrm{H}_{4}\right)$ and $7.89(2 \mathrm{H}, \mathrm{d}$, $J 8.0 \mathrm{~Hz}$, py- $\mathrm{H}_{3,5}$) (Calc. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.3$); H, 6.3; N, 9.69. Found: C, 68.5 ; H, 6.4; N, 9.6\%).
1 g was prepared from 4-(2-naphthyloxy)butyric acid as described above. Yield 74%; m.p. $151-152^{\circ} \mathrm{C}$ (THF-hexane); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.16-2.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.64(2 \mathrm{H}$, $\left.\mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.15\left(2 \mathrm{H}, \mathrm{t}, J 6.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.11-7.15$ $\left(2 \mathrm{H}, \mathrm{m}\right.$, naph $\left.-\mathrm{H}_{1,3}\right), 7.33\left(1 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}\right.$, naph $\left.-\mathrm{H}_{6}\right), 7.43(\mathrm{t}, J 7.9$ Hz , naph $-\mathrm{H}_{7}$) and 7.69-7.77 (3 H , m, naph- $\mathrm{H}_{4,5,8}$) (Calc. for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, $74.28 ; \mathrm{H}, 5.86 ; \mathrm{N}, 7.87$. Found: C, $74.0 ; \mathrm{H}$, $5.9 ; \mathrm{N}, 7.5 \%$).
lh was prepared according to the essentially same procedure of Hamilton. ${ }^{7 a}$ Namely 2,7-bis(3-carboxypropoxy)naphthalene $(5.0 \mathrm{~g}, 15 \mathrm{mmol})$ was chlorinated as described above. Into $1 \mathrm{dm}^{3}$ of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a mixture of 2,6 -diaminopyridine ($1.6 \mathrm{~g}, 14.7$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(4.2 \mathrm{~cm}^{3}, 30 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3}\right)$ and the diacid chloride in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3}\right)$ were added dropwise simultaneously over a period of 1 h at room temp. under vigorous stirring and the stirring was continued overnight. The solvent was evaporated to $300 \mathrm{~cm}^{3}$ and the organic layer was washed with water ($150 \mathrm{~cm}^{3} \times 2$), dried over MgSO_{4}, and evaporated to dryness. The residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ acetone $\left.=20: 1\right)$. Yield $0.45 \mathrm{~g}(7.4 \%) ;$ m.p. $202-203{ }^{\circ} \mathrm{C}$ (THF-hexane). $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.20-2.30\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 2.50-2.54(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{COCH}_{2}\right), 4.27\left(4 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.03-7.05(2 \mathrm{H}, \mathrm{dd}, J$ $2.5,8.5 \mathrm{~Hz}$, naph $\left.-\mathrm{H}_{3.6}\right), 7.11\left(2 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}\right.$, naph $\left.-\mathrm{H}_{1.8}\right), 7.71$ $\left(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}\right.$, naph-H ${ }_{4.5}$), $7.74(2 \mathrm{H}, \mathrm{br}$ s, NH), $7.78(1 \mathrm{H}, \mathrm{t}$, $J 8.0 \mathrm{~Hz}$, py- H_{4}) and $7.97\left(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}\right.$, py-H $\left.{ }_{3.5}\right)$ (Calc. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 68.13; H, 5.72; N, 10.36. Found: C, $68.5 ; \mathrm{H}$, $5.8 ; \mathrm{N}, 10.5 \%)$.

Syntheses of 1i-1k.-These compounds were prepared by a stepwise acylation of 2,6-diaminopyridine. 6-Amino-2-dodecanoylaminopyridine was synthesized as follows. To a stirred solution of 2,6 -diaminopyridine $10.0 \mathrm{~g}(91.6 \mathrm{mmol})$ and
triethylamine $13 \mathrm{~cm}^{3}$ (93 mmol) in dry THF ($100 \mathrm{~cm}^{3}$) was added a solution of dodecanoyl chloride $21 \mathrm{~cm}^{3}(91 \mathrm{mmol})$ in dry THF ($100 \mathrm{~cm}^{3}$) with cooling (ice-bath) and stirred overnight at room temp. The reaction mixture was concentrated in vacuo and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(300 \mathrm{~cm}^{3}\right)$. The organic layer was washed with water ($100 \mathrm{~cm}^{3} \times 3$), dried over MgSO_{4} and evaporated to dryness. The crude product was purified by recrystallization from EtOH to give white crystals. Yield 10.0 g $(38 \%) ;$ m.p. $108-109^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.7-2.0[21 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right){ }_{9} \mathrm{CH}_{3}\right], 2.32\left(2 \mathrm{H}, \mathrm{t}, J 6.8 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 2.16(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 6.23(1 \mathrm{H}, \mathrm{dd}, J 2.0,6.4 \mathrm{~Hz}, \text { py-H })^{2}$, $7.4-7.7(2 \mathrm{H}, \mathrm{m}$, py$\left.\mathrm{H}_{3,4}\right)$ and $7.84(1 \mathrm{H}, \mathrm{br}$ s, NH$)$. The amine was allowed to react with the corresponding acid chloride in the same manner as described above.

1i; Yield 70%; m.p. $110-111^{\circ} \mathrm{C}$ (THF-hexane). $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.88\left(6 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.4[16 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right], 1.71-1.77\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 2.39(4 \mathrm{H}, \mathrm{t}, J 8.0$ $\left.\mathrm{Hz}, \mathrm{COCH}_{2}\right), 7.50-7.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{m}\right), 7.56-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-$ $\left.\mathrm{H}_{p}, \mathrm{~N} H \mathrm{COC}_{11} \mathrm{H}_{23}\right), 7.77\left(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}\right.$, py- $\left.\mathrm{H}_{4}\right), 7.88-7.92(4$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}_{0}\right), 7.96\left(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}\right.$, py- H_{3}), 8.07 ($1 \mathrm{H}, \mathrm{d}, J 8.0$ $\left.\mathrm{Hz}, \mathrm{py}-\mathrm{H}_{5}\right)$ and $8.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NHCOPh) (Calc. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 72.88 ; H, 8.41 ; N, 10.6. Found: C, 72.95 ; H, 8.3; N, 10.6%).

1j; Yield 75%; m.p. $115-116^{\circ} \mathrm{C}(\mathrm{EtOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.88\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.4\left(16 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right), 1.71-$ $1.77\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 2.39\left(4 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 5.42$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 7.34-7.48 ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{OPh}\right), 7.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{N} H \mathrm{COC}_{11} \mathrm{H}_{23}\right), 7.61\left(1 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}\right.$, isophthal- $\left.\mathrm{H}_{5}\right), 7.77(1 \mathrm{H}$, $\mathrm{t}, J 8.0 \mathrm{~Hz}$, py-H $)_{4}$, $\left.7.97(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \text { py-H })_{3}\right), 8.05(1 \mathrm{H}, \mathrm{d}, J$ 8.0 Hz, py- H_{5}) , 8.14-8.29 ($2 \mathrm{H}, \mathrm{m}$, isophthal- $\left.\mathrm{H}_{4.6}\right), 8.28(1 \mathrm{H}, \mathrm{br}$ s , $\mathrm{N} H \mathrm{COPh}$) and $8.55\left(1 \mathrm{H}, \mathrm{s}\right.$, isophthal $\left.-\mathrm{H}_{2}\right)$ (Calc. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 66.8; H, 5.07; N, 11.1. Found: C, $66.55 ; \mathrm{H}$, 5.2 ; N, 11.0%).

1 k was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}=10: 1$). Yield 43%; m.p. $162-165^{\circ} \mathrm{C}(\mathrm{THF}) ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88\left(6 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.4(16 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right), 1.71-1.77\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 2.38(4 \mathrm{H}, \mathrm{t}$, $\left.J 8.0 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 3.76-3.78,3.91-3.94,4.18-4.24(16 \mathrm{H}, \mathrm{m}$, polyether protons), $6.90(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}$, crown aromatic proton), $7.41(1 \mathrm{H}, \mathrm{dd}, J 2.1,8.2 \mathrm{~Hz}$, crown aromatic proton), $7.48(1 \mathrm{H}, \mathrm{d}, J 2.1 \mathrm{~Hz}$, crown aromatic proton), $7.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\left.\mathrm{N} H \mathrm{COC}_{11} \mathrm{H}_{23}\right), 7.77(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \text { py-H })_{4}\right), 7.93(1 \mathrm{H}, \mathrm{d}, J 8.2$ Hz, py- H_{3}), $8.04\left(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}\right.$, py- $\left.\mathrm{H}_{5}\right)$ and $8.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NHCOPh) (Calc. for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{7}: \mathrm{C}, 65.6 ; \mathrm{H}, 8.09 ; \mathrm{N}, 7.17$. Found: C, 65.35; H, 8.0; N, 7.0\%).

11, $\mathbf{1 m}$ and $\mathbf{1 n}$ were synthesized in the same manner described above by employing 2,6 -diamino-4-benzyloxypyridine. ${ }^{26}$

11 was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ ethyl acetate $=50: 1$) and recrystallization from hexane to yield white crystals. Yield 82%; mp. $67-68{ }^{\circ} \mathrm{C}$ (hexane); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.91\left(6 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.33-1.38(8 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.70-1.74\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 2.35(4 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.8.0 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 5.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 7.25-7.45(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.49(2 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.65(2 \mathrm{H}, \mathrm{s}, \mathrm{py})$. (Calc. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.04 ; \mathrm{H}, 8.13 ; \mathrm{N}, 10.06$. Found: C, 69.3; H, 8.1; N, 9.7\%).

1m was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ acetone $=30: 1$). Yield 77%; m.p. $107-109{ }^{\circ} \mathrm{C}$ (THF-hexane); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.18-2.24\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 2.59$ $\left(4 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 4.06\left(4 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 5.14$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.89-6.93\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OPh}-\mathrm{H}_{o . p}\right), 6.92-6.97(4 \mathrm{H}$, $\mathrm{m}, \mathrm{OPh}-\mathrm{H}_{m}$), $7.28-7.44(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.64(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.64$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{py}$) and 1.84-1.86, 3.73-3.76 (THF) (Calc. for $\mathrm{C}_{30^{-}}$ $\mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5} \cdot 1.0$ THF: C, $69.96 ; \mathrm{H}, 6.39$; N, 7.20. Found: C, 69.9 ; H, 6.5; N, 7.2%).

1n was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ acetone $=20: 1$). Yield 7.4%; m.p. $194-195^{\circ} \mathrm{C}$ (THF-hexane). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.23-2.27\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 2.48-$
$2.52\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 4.26\left(4 \mathrm{H}, \mathrm{t}, J 5.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 5.19(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 7.03\left(2 \mathrm{H}\right.$, dd, $J 2.4,8.8 \mathrm{~Hz}$, naph- $\left.\mathrm{H}_{3.6}\right), 7.10(2 \mathrm{H}, \mathrm{d}$, $J 2.4 \mathrm{~Hz}$, naph- $\mathrm{H}_{1.8}$), $7.34-7.48(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.70(2 \mathrm{H}, \mathrm{d}, J 8.8$ Hz , naph- $\mathrm{H}_{4.5}$), $7.70(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.72(2 \mathrm{H}, \mathrm{s}, \mathrm{py})$ and $1.84-1.86$, 3.73-3.76 (THF) (Calc. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \cdot 1.0 \mathrm{THF}: \mathrm{C}, 70.68$; H , 6.76; N, 6.87. Found: C, $70.2 ;$ H, $6.8 ;$ N, 6.9%).

Syntheses of Flavins.-Flavin models were synthesized according to the literature; 2a; m.p. $262-263^{\circ} \mathrm{C}(\mathrm{EtOH})$ (lit., ${ }^{9 b}$ m.p. $\left.261-263^{\circ} \mathrm{C}\right), \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88(3 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.23-1.60\left[14 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right], 1.85-1.89(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 4.69-4.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 7.64-7.69(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{7,9}\right), 7.93-7.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{8}\right), 8.35\left(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{6}\right)$ and $8.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.

2b; m.p. $178-179^{\circ} \mathrm{C}(\mathrm{EtOH})$ (lit..$^{9 b}$ m.p. $\left.177-179{ }^{\circ} \mathrm{C}\right), \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88\left[3 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz},\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}\right], 1.23-1.60$ [$\left.14 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right], 1.85-1.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.54$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.69-4.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 7.62-7.65(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}_{7,9}$), $7.89-7.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{8}\right)$ and ($1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{H}_{6}$).

8-Octylmercapto-10-methylisoalloxazine 3 was prepared from 8-chloro-10-methylisoalloxazine ${ }^{10} 0.43 \mathrm{~g}(1.6 \mathrm{mmol})$ and octylmercaptan $0.40 \mathrm{~cm}^{3}(2.3 \mathrm{mmol})$ in the presence of triethylamine $0.40 \mathrm{ml}(2.9 \mathrm{mmol})$ in N, N-dimethylformamide (DMF) ($20 \mathrm{~cm}^{3}$). ${ }^{27}$ After the reaction mixture was refluxed overnight, the solvent was removed in vacuo. The residue was dissolved in chloroform ($50 \mathrm{~cm}^{3}$) and washed with water (50 cm^{3}). The organic layer was dried over MgSO_{4} and the solvent was evaporated to dryness. The crude product was purified by flash column chromatography (diethyl ether-acetone $=7.3$) and recrystallized from EtOH. Yield $128 \mathrm{mg}(21 \%)$. M.p. > $c a$. $230^{\circ} \mathrm{C}$ (decomp.) $(\mathrm{EtOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{t}, J$ $\left.7.0 \mathrm{~Hz} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.24-1.27\left[8 \mathrm{H}, \mathrm{m}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right], 1.50-1.57$ [$\left.2 \mathrm{H}, \mathrm{m}, \mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right], 1.78-1.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 3.13$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 4.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 7.31(1 \mathrm{H}, \mathrm{d}, J 2.0$ Hz , flavin- H_{7}), $7.46\left(1 \mathrm{H}\right.$, dd, $J 2.0,9.0 \mathrm{~Hz}$, flavin- H_{9}), 8.14 (1 $\mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, flavin- H_{6}) and $8.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ (Calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 59.82$; H, 6.61; N, 14.69. Found: C, $59.8 ; \mathrm{H}, 6.35 ; \mathrm{N}, 15.0 \%$).

10-Dodecyl-8-azaisoalloxazine 4 was prepared from 4 -amino-3-dodecylaminopyridine and alloxan according to the synthetic method of 3,10 -dimethyl-8-azaisoalloxazine. ${ }^{3 a}$ A mixture of 3-bromo-4-nitropyridine- N-oxide ($5.0 \mathrm{~g}, 23 \mathrm{mmol}$), ${ }^{3 a}$ dodecylamine ($5.7 \mathrm{~g}, 31 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.3 \mathrm{~g}, 24 \mathrm{mmol})$ was stirred for 24 h at $80^{\circ} \mathrm{C}$ in DMF ($30 \mathrm{~cm}^{3}$). After cooling, 150 cm^{3} of $\mathrm{HCl}\left(3 \mathrm{~mol} \mathrm{dm}{ }^{3}\right)$ was added to the reaction mixture and the resulting precipitate was obtained by filtration. Yield 4.46 g (60%); m.p. $96-97{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88(3 \mathrm{H}, \mathrm{t}$, $\left.J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.1-2.1\left[20 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right], 3.35(2 \mathrm{H}, \mathrm{q}$, $\left.J 6.0 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right)$ and $7.4-8.2(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$. The N-oxide was used without further purification. 3-Dodecylamino-4-nitropyridine N-oxide $1.7 \mathrm{~g}(5.3 \mathrm{mmol})$ was reduced to the diamine by hydrogenation in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~g})$ in AcOH $\left(40 \mathrm{~cm}^{3}\right)$. After filtration of Pd / C, condensation of the amine and alloxan monohydrate ($0.89 \mathrm{~g}, 5.56 \mathrm{mmol}$) in the presence of $\mathrm{H}_{3} \mathrm{BO}_{3}(0.70 \mathrm{~g}, 11.3 \mathrm{mmol}$) was conducted (24 h at room temp.). ${ }^{3 a}$ After the solvent was removed in vacuo, the residue was dissolved in chloroform $\left(100 \mathrm{~cm}^{3}\right)$ and washed with water $\left(100 \mathrm{~cm}^{3}\right)$. The organic layer was dried over MgSO_{4}, and the solvent was evaporated to dryness. The crude product was purified by recrystallization from EtOH to yield an orange powder. Yield $0.91 \mathrm{~g}(45 \%)$; m.p. $>$ ca. $240^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.27-1.83[20$ $\mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}$], $4.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 8.08(1 \mathrm{H}, \mathrm{d}, J 7.0$ Hz , flavin- H_{6}), $8.21-8.22\left(1 \mathrm{H}, \mathrm{m}\right.$, flavin- $\left.\mathrm{H}_{7}\right), 8.49(1 \mathrm{H}, \mathrm{d}, J 1.5$ Hz , flavin- H_{9}) and $8.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ (Calc. for $\mathrm{C}_{21} \mathrm{H}_{27^{-}}$ $\mathrm{N}_{5} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.14 ; \mathrm{H}, 7.32$; N, 17.53. Found: C, 62.8; H, 7.3; N, 17.5\%).

Benzodipteridine derivatives 5 were synthesized from $N, N^{\prime}-$
dialkyl-p-phenylenediamines and 6-chlorouracil or 6-chloro-3methyluracil according to the known procedures. ${ }^{3 d, e}$ Compound 5 a was prepared by the stepwise condensation of N, N^{\prime} -didodecyl- p-phenylenediamine with 6-chloro-3-methyluracil and 6-chlorouracil. N, N^{\prime}-Didodecyl- N-(3-methyluracil-6-yl)- p phenylenediamine was prepared according to the literature procedures. ${ }^{3 d, e}$ Yield 73%; m.p. $88-89^{\circ} \mathrm{C}$ (EtOH) (lit., ${ }^{3 d}$ m.p. $89^{\circ} \mathrm{C}$). Similarly this compound ($2.6 \mathrm{~g}, 4.6 \mathrm{mmol}$) was allowed to react with 6 -chlorouracil ($1.0 \mathrm{~g}, 6.8 \mathrm{mmol}$) in N, N^{\prime} diethylaniline $\left(1.6 \mathrm{~cm}^{3}\right)$ at $180^{\circ} \mathrm{C}$ for 2 h under N_{2}. After cooling, methanol ($20 \mathrm{~cm}^{3}$) was added to the reaction mixture. The resulting precipitate was filtered and washed with water. This compound was used without purification. To a mixture of $\quad N, N^{\prime}$-didodecyl- N-(3-methyluracil-6-yl)- N^{\prime}-uracil-6'-yl- p phenylenediamine ($0.46 \mathrm{~g}, c a .0 .68 \mathrm{mmol}$), sodium nitrate (0.66 $\mathrm{g}, 6.8 \mathrm{mmol})$ in acetic acid $\left(5 \mathrm{~cm}^{3}\right)$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(0.2 \mathrm{~cm}^{3}\right)$ was added at $90^{\circ} \mathrm{C}$ and stirred for 30 min . After cooling, diethyl ether was added to the reaction mixture. The resulting precipitate was collected by filtration and washed with water. Deoxygenation of the di- N -oxide was conducted by stirring the mixture of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.76 \mathrm{~g}, 3.6 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}\left(6 \mathrm{~cm}^{3}\right)$-DMF $\left(6 \mathrm{~cm}^{3}\right.$) for 24 h at room temp. After addition of water (100 $\left.\mathrm{cm}^{3}\right)$, the reaction mixture was extracted with $\mathrm{CHCl}_{3}\left(100 \mathrm{~cm}^{3}\right)$. The organic layer was dried over MgSO_{4} and evaporated to dryness. The crude product was purified by recrystallization from EtOH to yield a dark-purple powder. Yield $0.18 \mathrm{~g}(20 \%)$; m.p. $>c a .270^{\circ} \mathrm{C}$ (decomp); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88[6 \mathrm{H}, \mathrm{t}$, $\left.J 6.5 \mathrm{~Hz},\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}\right], 1.25-1.89\left[40 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right]$, $3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.68\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 8.49,8.53(2 \mathrm{H}, \mathrm{s}$, Ar) and $8.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})\left(\right.$ Calc. for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, $66.36 ; \mathrm{H}, 7.57$; N, 15.87. Found: C, 66.6; H, $8.0 ; \mathrm{N}, 15.8 \%$).

5b was prepared according to the literature; ${ }^{3 d} \mathbf{5 c}$ was synthesized as for 5b. N, N^{\prime}-Diethyl- N, N^{\prime}-bis(uracil-6-yl)-pphenylenediamine; yield 77%, m.p. $>300^{\circ} \mathrm{C}(\mathrm{AcOH})$ (Calc. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 0.5 \mathrm{AcOH}: \mathrm{C}, 55.07 ; \mathrm{H}, 5.35 ; \mathrm{N}, 20.28$. Found: C, $55.5 ; \mathrm{H}, 5.25 ; \mathrm{N}, 20.4 \%$). Cyclization of this compound by NaNO_{3} gave the di- N -oxide, yield 32%, m.p. $>300^{\circ} \mathrm{C}(\mathrm{AcOH})$. Deoxygenation of the di- N -oxide gave 5 c . Yield 59%, m.p. $>300{ }^{\circ} \mathrm{C}$ (DMF) (Calc. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 52.62$; H, 3.56; N, 27.2. Found: C, $52.5 ;$ H, 3.5 ; N, 27.6\%).
$N M R$ Titration.-To a CHCl_{3} solution of flavin $\left(270 \mathrm{~mm}^{3}\right.$, $5.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$) in an NMR tube (5 mm diameter) was added an appropriate amount (54, 108, 162, 216, 270, 405, 540 and $810 \mathrm{~mm}^{3}$) of a CHCl_{3} solution of the receptor (5.0×10^{-3} $\mathrm{mol} \mathrm{dm}{ }^{-3}$) and CHCl_{3} in the NMR tube was removed completely in vacuo. After addition of $\mathrm{CDCl}_{3}\left(540 \mathrm{~mm}^{3}\right)$, the chemical shifts of $\mathrm{N}(3)-\mathrm{H}$ proton of the flavins were recorded at $25 \pm 1{ }^{\circ} \mathrm{C}$. The association constants were determined by the nonlinear least-regression curve fitting of the titration curve. The association constants were calculated in the range $0.2-0.8$ of the complexation ratio. ${ }^{7}$

Job Plot.- CHCl_{3} solutions of $2 \mathrm{a}\left(5.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in CHCl_{3}) and $\mathbf{1 b}\left(5.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ were prepared in the NMR tubes in the following ratios; 540:0, 486:54, $432: 108,378: 162,324: 216,297: 243$ and $270: 270\left(\mathrm{~mm}^{3}: \mathrm{mm}^{3}\right)$. The chemical shifts of the $\mathrm{N}(3)-\mathrm{H}$ of 2 a in CDCl_{3} were recorded in a similar manner as described above.

Fluorescence Spectrum.- $\mathrm{A} \mathrm{CHCl}_{3}$ solution of $\mathbf{2 a}\left(1.0 \times 10^{-5}\right.$ $\left.\mathrm{mol} \mathrm{dm}{ }^{3}\right)$ was titrated with the receptors ($0-5.0 \times 10^{-3} \mathrm{~mol}$ $\mathrm{dm}{ }^{3}$) by using stock solutions ($0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ in CHCl_{3}). The concentration of stock solution of $\mathbf{1 a}$ or $\mathbf{1 g}, \mathbf{1 h}$ was 5.0 or $3.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$, respectively, because of a solubility problem, and the titration range was $0-2.5$ or $0-1.5 \times 10^{-3} \mathrm{~mol}$ dm^{-3}. The emission spectrum of 2 a was recorded at the excitation wavelength (440 nm) at $20 \pm 1^{\circ} \mathrm{C}$. The association
constants were calculated by monitoring the emission decrease at 530 nm according to the literature. ${ }^{11}$ The data were obtained from duplicate experiments. Association constants between 2b and $\mathbf{1 b}$ or 1 h were determined to be less than 10 or $20 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$ corresponding to dynamic quenching of the flavin by the receptors.

Extraction Experiment.-A capped sample tube ($30 \mathrm{~cm}^{3}$) containing $5 \mathrm{c}\left(2.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ in distilled $\mathrm{H}_{2} \mathrm{O}\left(3 \mathrm{~cm}^{3}\right)$ and $\mathrm{CHCl}_{3}\left(3 \mathrm{~cm}^{3}\right)$ was stirred vigorously for 2 h at $25 \pm 1^{\circ} \mathrm{C}$ and centrifuged for 5 min to make the solution clear. The concentration of 5 c extracted into the CHCl_{3} layer was determined spectrophotometrically by using $\lambda_{\text {max }} 542 \mathrm{~nm}$ of 5 a ($\varepsilon 2.2 \times 10^{4} \mathrm{~cm}^{-1} \mathrm{~mol}^{-1} \mathrm{dm}^{3}$ in CHCl_{3}), since 5 c was scarcely soluble in CHCl_{3}. The data were obtained from duplicate experiments.

Rate Measurement.-Kinetic measurements were performed similarly to those described previously. ${ }^{3 e}$ In a Thunberg cuvette, $30 \mathrm{~mm}^{3}$ of $\mathbf{5 a}, \mathbf{5 b}$ or $60 \mathrm{~mm}^{3}$ of $\mathbf{5 c}$ stock solution ($\mathbf{5 a}, \mathbf{5 b}$; $1.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ in $\mathrm{CHCl}_{3}, 5 \mathrm{c} ; 5.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ in DMF) and an appropriate amount of the receptors ($\mathbf{1} \mathbf{a}$; $5.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}{ }^{-3}, 1 \mathrm{~h} ; 3.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$, other receptors; $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$) were added into the cell part with CHCl_{3}, and $60 \mathrm{~mm}^{3}$ of the BNAH $\left(4.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ or $50 \mathrm{~mm}^{3}$ of the $\mathrm{PhNHNH}_{2}\left(0.110 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in CHCl_{3}) was placed in the upper part of the cuvette. In all cases, the total volume of the contents in the cuvette was adjusted to $3 \mathrm{~cm}^{3}$ by adding CHCl_{3} into the cell part. Then both the solutions were bubbled with CHCl_{3}-prehumidified O_{2}-free $\mathrm{N}_{2},{ }^{28}$ obtained by passing through vanadous sulfate solution, $\mathrm{H}_{2} \mathrm{O}$, paraffin, NaOH pellets, and CHCl_{3} for 15 min (since the rates are sensitive to a moisture of $\mathrm{N}_{2}, \mathrm{a}_{3} \mathrm{CCl}_{3}$-bubbling bottle for prehumidification must be freshly prepared prior to experiments). The reaction was initiated by mixing. The pseudo-first-order rate constants were determined by following the absorption increase of the reduced 5 at 660 nm .

Acknowledgements

We are grateful to one of the referees for helpful comments.

References

1 I. Tabushi, Tetrahedron, 1984, 40, 269; J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1988, 27, 89.
2 J. H. Fendler, Membrane Mimetic Chemistry, Wiley, New York, 1982; D. J. Cram, in Applications of Biochemical Systems in Organic Chemistry, ed. J. B. Jones, S. J. Sih and D. Perman, Wiley, New York, 1980, part II, p. 815.
3 (a) Y. Yano, M. Ohshima, I. Yatsu, S. Sutoh, R. E. Vasquez, A. Kitani and K. Sasaki, J. Chem. Soc., Perkin Trans. 2, 1985, 753; (b) Y. Yano, H. Kamishima, S. Sutoh and K. Iizuka, J. Chem. Res. (S), 1986, 382; (c) Y. Yano, T. Yokoyama, M. Ikuta and K. Yoshida, J. Org. Chem., 1987, 52, 5606; (d) F. Yoneda, M. Koga, K. Tanaka and Y. Yano, J. Heterocycl. Chem., 1989, 26, 1221; (e) Y, Yano, M. Nakazato, K. Iizuka, T. Hoshino, K. Tanaka, M. Koga and F. Yoneda, J. Chem. Soc., Perkin Trans. 2, 1990, 2179; (f) Y. Yano, M. Ikuta, Y. Amamiya and T. Nabeshima, Chem. Lett., 1991, 461.
4 Y. Yano, K. Mitsui, Y. Ohsawa, T. Kobayashi and T. Nabeshima, J. Chem. Soc., Chem. Commun., 1993, 1719.

5 (a) A. D. Hamilton, Bioorg. Chem. Frontiers, Springer-Verlag, Berlin, 1991, vol. 2, p. 115; (b) J. Rebeck, Jr., Acc. Chem. Res., 1990, 23, 399; Angew. Chem., Int. Ed. Engl., 1990, 29, 245.
6 B. Feibush, A. Figueroa, R. Clarkes, K. D. Onan, P. Feibush and B. L. Karger, J. Am. Chem. Soc., 1986, 108, 3310; B. Feibush, M. Saha, K. D. Onan, B. Karger and R. Giese, J. Am. Chem. Soc., 1987, 109, 7531.
7 (a) A. D. Hamilton and D. V. Engen, J. Am. Chem. Soc., 1987, 109, 5035; (b) A. D. Hamilton and D. Little, J. Chem. Soc., Chem. Commun., 1990, 297; S.-K. Chang, D. V. Evan, E. F. Fan and
A. D. Hamilton, J. Am. Chem. Soc., 1991, 113, 7640; (c) M. S. Goodman and S. D. Rose, J. Am. Chem. Soc., 1991, 113, 9380.

8 Preliminary communications; (a) Y. Yano, N. Tamura, K. Mitsui and T. Nabeshima, Chem. Lett., 1989, 1655; (b) S. Shinkai, G.-X. He, T. Matsuda, A. D. Hamilton and H. S. Rosenzweig, Tetrahedron Lett., 1989, 30, 5895.
9 (a) F. Yoneda, Y. Sakuma, M. Ichiba and K. Shinomura, J. Am. Chem. Soc., 1976, 98, 830; (b) S. Shinkai, A. Harada, Y. Ishikawa and O. Manabe, J. Chem. Soc., Perkin Trans. 2, 1982, 125.

10 F. Yoneda, K. Shinozuka, K. Tsukada and A. Koshiro, J. Heterocycl. Chem., 1979, 16, 1365; E. G. Moore, S. Ghisla and V. Massey, J. Biol. Chem., 1979, 254, 8173.
11 N. Mataga and S. Tsuno, Bull. Chem. Soc. Jpn., 1957, 30, 368.
12 Y. Yano, M. Nakazato, S. Sutoh, R. E. Vasquez, A. Kitani and K. Sasaki, J. Chem. Res. (S), 1985, 404.

13 A. Kotaki, M. Naoi and K. Yagi, J. Biochem., 1970, 68, 287; K. Yagi, N. Oishi, K. Nishimoto, J. D. Choi and P.-S. Song, Biochemistry, 1980, 19, 1553.
14 K. Nishimoto, Y. Watanabe and K. Yagi, Flavins and Flavoproteins, ed. K. Yagiand T. Yamano, University Press, Baltimore, 1980, p. 493.
15 W.-W. Tso and W.-P. Fung, Inorg. Chim. Acta, 1981, 55, 129.
16 R. M. Burnett, G. D. Darling, D. S. Kendal, M. E. LeQuesne, S. G. Mayhew, W. W. Smith and M. L. Ludwig, J. Biol. Chem., 1974, 249, 4383.
17 S. Shinkai, N. Honda, Y. Ishikawa and O. Manabe, J. Am. Chem. Soc., 1985, 107, 6286; T. Akiyama, F. Simeno, M. Murakami and F. Yoneda, J. Am Chem. Soc., 1992, 114, 6613.

18 R. Stewart and D. J. Norris, J. Chem. Soc., Perkin Trans. 2, 1978, 246; M. F. Powell, W. H. Wong and T. C. Bruice, Proc. Natl. Acad. Sci., USA, 1982, 79, 4606.

19 Y. Yano, M. Nakazota and E. Ohya, J. Chem. Soc., Perkin Trans. 2, 1985, 77.
20 In our preliminary communication [ref. $8(a)$], we reported that $\mathbf{1 h}$ decreases the rate of 5 c . Since it was found that the previous result originates in impurity of the receptor $\mathbf{1 h}$, we correct it as shown in Table 4.
21 The oxidation rate is known to increase with increasing solvent polarity: C. H. Suelter and D. B. Metzler, Biochim. Biophys. Acta, $1960,44,23$. It was confirmed that the larger rate constants of 5 c are due to 2% DMF in CHCl_{3}
22 S. Fukuzumi, S. Kuroda and T. Tanaka, J. Am. Chem. Soc., 1985, 107, 3020.
23 Dictionary of Organic Compounds, Maruzen Co. Ltd, Tokyo, vol. 2, p. 878.

24 O. Dann and W. P. Arndt, Ann., 1954, 589, 38.
25 P. Cagniant and C. Charaux, Bull. Soc. Chim. Fr., 1966, 3249.
26 D. G. Markees, V. C. Dewey and G. W. Kidder, J. Med. Chem., 1968, 11, 126.
27 F. Yoneda, K. Shinozuka, K. Tsukuda and A. Koshiro, J. Heterocycl. Chem., 1979, 16, 1365; E. G. Moore, S. Ghisla and V. Massey, J. Biol. Chem., 1979, 254, 8173.
28 L. Meites and T. Meites, Anal. Chem., 1948, 20, 984.

Paper 4/01664E
Received 21 st March 1994
Accepted 29th June 1994

[^0]: ${ }^{a}$ In CDCl_{3} at $25^{\circ} \mathrm{C}$. The uncertainty is expressed by standard deviation. ${ }^{b}$ Association constants determined by fluorescence spectroscopy are given in parentheses; in CHCl_{3} at $20^{\circ} \mathrm{C}$.

